Category Theory: a concise course
¶
1. Preface
2. Basic Definitions
2.1. A motivating example
2.2. Definition of a category
2.3. Philosophy of category theory
2.4. Solutions
3. Initial and Terminal Object
3.1. Universal Property
3.2. Duality
3.3. Other interesting category
3.4. Hom set and global element
3.5. Solutions
4. Isomorphism
4.1. A categorical view of bijections
4.2. Monomorphism
4.3. Epimorphism
4.4. Isomorphism
4.5. Solutions
5. Product, Coproduct, Exponential
5.1. Product
5.2. Coproduct
5.3. Exponential
5.4. Cartesian closed category
5.5. Solutions
6. Functor and Natural Transformation
6.1. Functor
6.2. Endomorphism and Endofunctor
6.3. Natural transformation
6.4. Equivalent categories
6.5. Solutions
7. Constructions
7.1. Set and class
7.2. Functor category
7.3. Morphism category
7.4. Presheaf
7.5. Solutions
8. Yoneda’s Lemma
8.1. Presheaves
8.2. Representable functors
8.3. Yoneda embedding
8.4. Yoneda’s Lemma
8.5. Solutions
9. Limit
9.1. Diagram
9.2. Cone
9.3. Limit
9.4. Diagram as functor
9.5. Cone as natural transformation
9.6. Solutions
10. References
11. Glossary
11.1. Acronyms
11.2. Nomenclature
11.3. Categories
12. Index
Category Theory: a concise course
Navigation
1. Preface
2. Basic Definitions
3. Initial and Terminal Object
4. Isomorphism
5. Product, Coproduct, Exponential
6. Functor and Natural Transformation
7. Constructions
8. Yoneda’s Lemma
9. Limit
10. References
11. Glossary
12. Index
Logical Foundations Home
PDF version
Related Topics
Documentation overview
Next:
1. Preface
Quick search