Index
Symbols
|
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
O
|
P
|
R
|
S
|
T
|
U
|
V
|
Y
Symbols
1
2
3
A
abstract category
,
[1]
ACLat
Agda
algebra (examples)
group
algebraic lattice
application morphism
arity
Arrow
arrow category
associative law
ATP
(v)
B
BLat
Boolean algebra
Boolean algebra homomorphism
bound object
terminal object
C
cartesian closed category
Cat
category
category (examples)
1 (one object)
2 (two objects)
3 (three objects)
ACLat (algebraic complete lattices)
BLat (Boolean lattices);
CLat (complete lattices);
Cat (small categories)
Fin (finite sets)
Grph (graphs)
,
[1]
,
[2]
HLat (Heyting lattices);
Lat (lattices);
Mon (monoids)
Par (partial functions)
Pos (posets)
,
[1]
Rel (relational structures)
Set (sets)
,
[1]
arrow category
comma category
presheaf
slice category
Δ (finite ordinals)
category of categories
,
[1]
category of small categories
CCC
CiC
CLat
cocone
codomain
domain
,
[1]
colimit
Comma
comma category
commutative diagram
,
[1]
,
[2]
compact element
complete lattice
complete lattice homomorphism
component
composition
,
[1]
of functions
of graphs
of morphisms
of relations
concatenation
concrete category
,
[1]
cone
consecutive functions
,
[1]
chain of
consecutive morphisms
constant functor
constant natural transformation
contravariant embedding
contravariant powerset functor
coproduct
,
[1]
Coq
covariant embedding
covariant powerset functor
Curry-Howard correspondence
D
degeneracy map
dependent type
diagram (formally)
(informally)
directed graph
domain
codomain
,
[1]
dual category
opposite category
duality
E
edge set
edges functor
endofunctor
,
[1]
endomorphism
,
[1]
epimorphism
,
[1]
equivalence of categories
equivalent categories
equivalent categories
equivalence of categories
ER
essentially surjective on objects
ETT
evaluation functor
,
[1]
evaluation natural transformation
existential image functor
,
[1]
exponential
,
[1]
exponential graph
exponential object (examples)
Grph`
Pos
Set
extensional
F
face map
faithful functor
Fin
finite ordinals
finite ordinals, Δ
simplex category
free algebra
,
[1]
free monoid
Kleene closure
free object
initial object
full embedding
full functor
full subcategory
fully faithful functor
function extensionality
functor
,
[1]
functor (examples)
(covariant) powerset function
existential image functor
universal image functor
functor category
,
[1]
G
generalized element
,
[1]
global element
point
graph
directed
graph morphism
,
[1]
group
,
[1]
Grph
H
Heyting algebra
Heyting algebra homomorphism
HLat
hom set
morphisms
homomorphism (examples)
Mon (monoids)
I
identity law
identity morphism
impredicative
indexing category
initial object
free object
intensional
internal reflection
isomorphism
,
[1]
,
[2]
ITP
(v)
ITT
K
Kleene closure
free monoid
L
large category
Lat
lattice
lattice homomorphism
Lean
legs (of a diagram)
limit
locally small category
,
[1]
,
[2]
M
metaprogram
Mon
monoid
,
[1]
monoid homomorphism
monomorphism
,
[1]
,
[2]
monotone function
,
[1]
morphism (examples)
Grph (graphs)
identity
morphism category
morphisms
hom set
N
natural isomorphism
naturally isomorphic
natural transformation
,
[1]
naturality condition
naturally isomorphic
natural isomorphism
NuPRL
O
opposite category
dual category
P
Par
parallel functor
parallel morphism
parallel morphisms
partial function
total function
point
global element
polymorphic function
Pos
poset
,
[1]
,
[2]
predicative
presheaf
,
[1]
product
,
[1]
product morphism
proof tactic
R
reflection
Rel
relation
,
[1]
relational product
relational structure
representable functor
S
self-dual
self-dual category
Set
signature
simplex category
finite ordinals, Δ
simplicial identities
simplicial set
Slice
slice category
small category
,
[1]
,
[2]
source natural transformation
source vertex
T
target natural transformation
target vertex
terminal object
bound object
topos
total function
partial function
TT
U
UIP
underlying set functor
universal image functor
,
[1]
universal mapping property
universal property
,
[1]
V
vertex
source
target
vertex set
vertices functor
Y
Yoneda embedding
Yoneda's Lemma
Category Theory: a concise course
Navigation
1. Preface
2. Basic Definitions
3. Initial and Terminal Object
4. Isomorphism
5. Product, Coproduct, Exponential
6. Functor and Natural Transformation
7. Constructions
8. Yoneda’s Lemma
9. Limit
10. References
11. Glossary
12. Index
Logical Foundations Home
PDF version
Related Topics
Documentation overview
Quick search