Category Theory: a concise course¶

  • 1. Preface
  • 2. Basic Definitions
    • 2.1. A motivating example
    • 2.2. Definition of a category
    • 2.3. Philosophy of category theory
    • 2.4. Solutions
  • 3. Initial and Terminal Object
    • 3.1. Universal Property
    • 3.2. Duality
    • 3.3. Other interesting category
    • 3.4. Hom set and global element
    • 3.5. Solutions
  • 4. Isomorphism
    • 4.1. A categorical view of bijections
    • 4.2. Monomorphism
    • 4.3. Epimorphism
    • 4.4. Isomorphism
    • 4.5. Solutions
  • 5. Product, Coproduct, Exponential
    • 5.1. Product
    • 5.2. Coproduct
    • 5.3. Exponential
    • 5.4. Cartesian closed category
    • 5.5. Solutions
  • 6. Functor and Natural Transformation
    • 6.1. Functor
    • 6.2. Endomorphism and Endofunctor
    • 6.3. Natural transformation
    • 6.4. Equivalent categories
    • 6.5. Solutions
  • 7. Constructions
    • 7.1. Set and class
    • 7.2. Functor category
    • 7.3. Morphism category
    • 7.4. Presheaf
    • 7.5. Solutions
  • 8. Yoneda’s Lemma
    • 8.1. Presheaves
    • 8.2. Representable functors
    • 8.3. Yoneda embedding
    • 8.4. Yoneda’s Lemma
    • 8.5. Solutions
  • 9. Limit
    • 9.1. Diagram
    • 9.2. Cone
    • 9.3. Limit
    • 9.4. Diagram as functor
    • 9.5. Cone as natural transformation
    • 9.6. Solutions
  • 10. References
  • 11. Glossary
    • 11.1. Acronyms
    • 11.2. Nomenclature
    • 11.3. Categories
  • 12. Index

Logo

Category Theory: a concise course

Navigation

  • 1. Preface
  • 2. Basic Definitions
  • 3. Initial and Terminal Object
  • 4. Isomorphism
  • 5. Product, Coproduct, Exponential
  • 6. Functor and Natural Transformation
  • 7. Constructions
  • 8. Yoneda’s Lemma
  • 9. Limit
  • 10. References
  • 11. Glossary
  • 12. Index

  • Logical Foundations Home
  • PDF version

Related Topics

  • Documentation overview
    • Next: 1. Preface

Quick search

©2019, Charlotte Aten, Venanzio Capretta, and William DeMeo. | Powered by Sphinx 1.8.5 & Alabaster 0.7.12